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In this paper we present the formulation and results of two-wave interactions in a 
spatially developing shear layer, directed at understanding and interpreting the 
physical mechanisms that underlie the results of quantitative observation. Our study 
confirms the existence of Kelly’s mechanism that augments the growth of a 
subharmonic disturbance by extracting energy from its fundamental or vice versa. 
This mechanism is shown to be strongest in the region where the fundamental begins 
to return energy to the mean flow and the two wave modes are of comparable energy 
levels. It is found that the initial conditions and especially the initial phase angle 
between the two disturbances play a very significant role in the modal development 
and that of the shear layer itself. A doubling of the shear-layer thickness is shown 
to take place; the two successive plateaux in its growth are attributed to the peaking 
in the energy production rates of the fundamental and subharmonic fluctuations. 

1. Introduction 
Sat0 (1959) appears to have been the first to observe what was then a rather curious 

development of a subharmonic disturbance in the transition region of a separated 
plane shear layer. More was subsequently learned from the experiments of Wille 
(1963), Freymuth (1966), Browand (1966), Miksad (1972,1973), Winant & Browand 
(1974) and more recently Ho & Huang (1982), Zhang, Ho & Monkewitz (1985) and 
Gaster, Kit & Wygnanski (1985). A theoretical explanation of conditions favourable 
to the subharmonic development in free shear layers was given by Kelly (1967). These 
conditions include a finite threshold for the fundamental disturbance and more 
importantly, Kelly’s (1967) work implies that a ‘ favourable’ phase relation must 
exist between the fundamental and its subharmonic. Although Kelly’s mechanism 
was arrived via weakly nonlinear arguments that necessarily involve small amplifi- 
cation rates, the basic physical consequences, rather than the details, have much more 
universality than the original framework (Liu 1981). On the other hand, for real 
developing shear layers the disturbance growth rates are anything but small in the 
incipient transition region as experiments indicate (see, for instance, Ho & Huang 
1982). 

Quantitative measurements of the disturbance amplitudes indicate that the 
subharmonic, a t  half the frequency of the fundamental, peaks further downstream 
than the fundamental in a spatially developing shear layer (Ho & Huang 1982). Each 
individual component, in fact, undergoes a life cycle of amplification and decay. 
Although the peaks in amplitude do not overlap, there is a significant spatial, 
finite-amplitude region of overlap between the fundamental mode and its subhar- 
monic. The switching in modal content, of the disturbances is revealed by the 
quantitative amplitude measurements (Ho & Huang 1982) to be a gradual process 
rather than an abrupt one as might have been suggested by visual observations of 
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dye streaks alone. Of course, we were already cautioned by the work of Williams & 
Hama (1980). They showed that a linear superposition of constant-amplitude 
fundamental and subharmonic wave functions in a shear layer could produce 
interference effects that lead to dye streak accumulation suggesting the switch in 
modal content, when in fact, each of the wave components is quite distinct. 

In this paper we shall present the formulation and results for mode interactions 
in a spatially developing shear layer, directed at understanding and interpreting the 
physical mechanisms that underlie the results of quantitative observations. The 
present work falls into a class of problems involving frequency-mode interactions 
among two-dimensional spatial structures (or axisymmetric structures in a round jet, 
Mankbadi 1985). For a discussion of more general situations involving three- 
dimensional (or helical) structures, see Liu (1987). The basic framework considered 
is an explicit account of the energy budget of each individual disturbance component 
as well as that of the mean flow according to Nikitopoulos (1982), Liu & Nikitopoulos 
(1982) and following their example, Mankbadi (1985) for the case of a jet. This 
necessitates calculating the rate of energy exchange between the various scales of 
motion. While the rate of energy exchange between each disturbance mode and the 
mean flow is fairly well understood (the ‘production’ mechanism), the rate of energy 
exchange between modes is still relatively novel. Stuart (1962), although directed at 
fmt towards the understanding of the interaction between the fundamental and its 
harmonic but also appropriate for the subharmonic problem, split the flow quantity 
for an ensemble of disturbances into odd and even modes. The rate of energy transfer 
from the even to the odd modes is then u:u;au;/aq, where ( )’ denotes odd and ( )” 
denotes even modes and the average is taken over the largest periodicity of the 
disturbances. This is interpreted as the work done by the stresses of the odd modes 
against the rates of strain of the even modes. The mechanism that we attribute to 
Kelly (1967) is clear from the present energy transfer consideration in that the phase 
relation between the stresses of the odd modes and the appropriate rates of strain 
of the even modes determines the direction of energy transfer and that the mode 
amplitudes determine the strength of this transfer. However, for a real laboratory 
shear layer, the fundamental component is one which has the largest initial 
amplification rate resulting in rather strong interactions with the mean motion. The 
subharmonic component evolves into a similar situation in a spatial region for which 
its local amplification rate also reaches a ‘momentary ’ maximum. These interactions 
with the mean flow scale with an amplitude to the second power via the Reynolds 
stresses, whereas the mode interactions would scale as a typical amplitude to the third 
power from the above discussion of the rate of energy transfer. Thus, in a developing 
shear layer, the individual modal production rate from the mean flow is anticipated 
to be the dominant mechanism for initial disturbance evolution. In this case, the 
dominant initial mode interactions would be the implicit nonlinear interactions via 
the mean flow rather than by the more explicit direct energy transfer between the 
modes. The latter mechanism is, however, most important in affecting the details of 
the spatial distribution of the amplitudes and becomes relatively important in the 
vicinity where the ‘production’ mechanism from the mean flow changes sign. 

2. Conservation equations 
In  laboratory observations of the transition region in shear layers there usually 

exists modes other than the fundamental and the subharmonic including perhaps 
initially weak fine-grained turbulence. The latter, coexisting with monochromatic 



Nonlinear binary-mode interactions in a developing mixing layer 347 

coherent disturbances, has been the subject of discussion elsewhere (see, for instance, 
Liu 1981) and will be excluded from consideration here. We shall concentrate on the 
understanding of coherent mode interactions in an otherwise laminar viscous shear 
flow. We shall start from the Navier-Stokes equations for an incompressible fluid and 
split the total flow quantity into that for the mean motion Q and the overall 
disturbance p consisting of (q'+p"), where q' denotes the odd mode and q" denotes 
the even mode (Stuart 1962). The mean-flow momentum and continuity equations 
are obtained following this Reynolds' splitting and averaging, 

where appropriate (constant) length and velocity scales are used to make the 
equations dimensionless, U, and P are the mean-flow velocity and pressure? respec- 
tively, G, the total disturbance velocity, xi the spatial coordinates, t the time and Re 
the Reynolds number. The bar over the substantial derivative indicates that the 
derivative is taken following the mean flow. The corresponding total disturbance 
momentum and continuity equations are 

where is the total disturbance pressure. Equations (2.1)-(2.4) are identical in form 
with the Reynolds system. Following Stuart (1962), the total disturbance is split into 
the odd and even modes, 4, = u;+u;. The linear terms in (2.3) and (2.4) are 
correspondingly split and would retain their respective interpretations in the 
individual conservation - equations for the odd and even modes. The nonlinear effect, 
through a(G, G, -2, G,)/ax,, deserves further comment. The results from the mode 
splitting give rise to the d i n e a r  term i3(u;u;+uYui)/ax, for the odd-mode 
momentum equation, with u; ui = 0. Thexen-mode momentum equation would 
obtain the even contributionsfroma(ui u; -ui u;)/ax, anda(u," ui-u," u;/ax,. However, 
the mean kinetic energy equations for the odd and even modes would be coupled 
through the mode interaction mechanism u; u; au;/ax, in what follows. 

For the purposes of obtaining the 'amplitude' equations at a later stage, we first 
obtain the energy equations for the various scales of motion as follows : 

mean motion 

(production) dissipation 

(2.5) 

' diffusion ' 
t The (constant) density is abbsorbed into the pressure in all the pressure contributions. 

12 PLY 179 



348 

odd modes 

D. E. Nikitopoulos and J. T. C. Liu 

production dissipation 

‘ diffusion ’ 
even modes 

production dissipation 

‘ diffusion ’ 
- 

The usual Reynolds average has been used and we note that the products uiu; 
are uncorrelated but that the triple products such as u;u;au;/ax, are. These latter 
products are interpreted as the work done by the stresses of the odd modes against 
the appropriate rates of strain of the even modes and are responsible for the net 
energy transfer between the odd and even modes. Both the even and odd modes have 
their respective production mechanism, responsible for the extraction of energy from 
or a return of energy to the mean shearing motion. The remaining mechanisms include 
the rate of viscous dissipation of the various scales of motion and of ‘diffusion’ by 
viscosity and by the fluctuations. 

The discussion is so far general in that we have not specified whether the problem 
is spatial or temporal. For the spatial problem the Reynolds average is then the time 
average, the periodicity is in time and the amplitudes (or ‘envelopes’) of the 
fluctuations grow and decay spatially. In  the temporal problem, the Reynolds 
average is spatial, connected with the spatial periodicity and the amplitude of 
fluctuations evolves in time. In  the following we shall study the observed or observ- 
able spatially developing shear layer for which the fluctuations have periodicity in 
time. In this case the odd modes consist of frequencies 8’38, .. ., (2n- 1)/3 and the 
even modes consist of 2/3,4/3, . . . ,2n/?, where n is an integer. Thus mode u;(2/3) would 
correspond to, say, the fundamental component and u;(/3) would then be its 
subharmonic. In  $3 we shall consider the nonlinear interaction between modes 2/3 and 
/? in a developing shear layer, the simplest case of mode interactions. 

’ 

3. Two-mode interactions 
In this section we shall apply the general framework obtained previously to study 

the two-mode interaction problem. The even mode U” would thus be interpreted as 
that of the fundamental mode with frequency 28; the odd mode u’ would be its 
subharmonic of frequency /?. With the objective of obtaining the ‘amplitude’ or 
‘envelope ’ equations, in terms of the observable kinetic-energy content across the 
shear layer for each mode, we begin with (2.5)-(2.7) for a thin shear layer for which 
the boundary-layer type of approximations hold for the mean quantities. The 
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/--- 

FIGURE 1. The mixing-layer schematic. 

schematical representation of the shear layer is shown in figure 1. The simplified 
kinetic-energy equations are then integrated across the plane shear layer to give 

au - ’“j0 U(U2-Pm)dz+ U(U2-U:m)dz = -  (-u’w’-u”w”)--@, 
2dx -m 1 ST, - - aZ 

I d  au 
-- 5 U(u’2+w’2)dz = 
2dx 

au 
2dx 

where x is the streamwise coordinate measured from the start of the mixing layer, 
z is the vertical coordinate measured from the centre of the mixing layer; u, w are 
the x ,  z fluctuation velocities; U is the mean velocity with f 00 denoting the upper 
(say, slower) and lower free streams, respectively; 5 is the integral of mean-flow 
viscous dissipation and 6 and represent the corresponding dissipation rates of the 
fluctuations. Equations (3.1 )-(3.3), where two-dimensional wavy disturbances in a 
two-dimensional mean flow have been assumed, form the basis for obtaining the 
evolution equations for the measurable energy content of the disturbances across the 
shear layer. 

3.1. Shape assumptions 
Following earlier work (see, for instance, Stuart 1958; Ru-Sue KO, Kubota & Lees 
1970; Liu & Lees 1970; Liu 1981; Alper & Liu 1978), the ‘closures’ for the 
disturbances are obtained by assuming the separable form of the product of an 
unknown finite amplitude A,(%) with a vertical distribution function given by the 
local linear stability theory, 

12-2 
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where $t here denotes the eigenfunction of the local linear theory and is a function 
of the rescaled vertical variable r] = z/S(x)  ; S(z) is a lengthscale of the mean flow yet 
to be identified and ( )' denotes differentiation with respect to 7; /3 = 27cfS(z)/T is 
- the dimensionless local (Strouhal) frequency, f is the physical frequency and 
U = +( U ,  + U-,). The local wavenumbers a are also scaled by S(x). The angle t3 is 
the relative phase between the fundamental component (28) and its subharmonic (8) 
and C.C. denotes the complex conjugate. The velocities and lengths are considered to 
be made dimensionless by n and So (so that S(0) = l ) ,  and time by So/o. These 
two-dimensional disturbances have their vorticity axis perpendicular to the direction 
of the free streams. 

For the mean flow we shall assume a hyperbolic tangent-type profile, which has 
experimentally proven to be very close to reality away from the splitter plate into 
the developed mixing-layer region (Wygnanski et al. 1979; Fiedler et al. 1981; 
Ho & Huang 1982), 

U =  l - R  tanhr], 

where R =  u-, - u+, 
u-, + u+, 

is the velocity ratio of the shear layer. Since r ]  = z/S(x),  it is now understood that 
S(x) is the half-maximum slope thickness of the shear layer. This characterizes the 
mean motion and must be jointly determined with the amplitudes A&) of the finite 
disturbances. 

Both shape functions dl and $ z  are taken to be governed locally by the Rayleigh 
equation (see Liu & Merkine 1976) according to linear stability analysis with the 
appropriate boundary conditions 

( U - c )  ($"-a")-$U" = 0, 

where c is the phase velocity scaled by the mean velocity T of the two free streams. 
This, of course, is an approximation since the viscous terms have been dropped. We 
deal here with an inflexional mean-velocity profile which is dynamically unstable and 
thus the inviscid equation suffices. The Rayleigh equation yields solutions that 
correspond to amplified disturbances up to the point /3 = 1 of neutral stability. In  
the neighbourhood of this point and for values of /? larger than 1 (corresponding to 
damped disturbances) the equation becomes singular. In order to obtain solutions 
in the locally damped region use is made of a complex integration contour scheme 
first discussed by Lin ( 1955) and successfully applied by Mack (1965) and Zaat (1958) 
for the case of a boundary layer. The amplification rates -at versus /3 are shown in 
figure 2, providing the necessary 'state' diagram for initial disturbances in the 
subsequent nonlinear problem. 

The eigenfunctions 4, and $ z  are normalized so as to render IA,(x)I2 and IAz(x)12 
to corresponding energy densities of each mode of the finite disturbances such that 
the mode energy contents across the shear layer are 

f m  

2 -m 
&(z) = s (u '~  dy = IA,(x)I2 S(z), 

+m 

2 -m 
&(z) = +w"*) dy = IA,(Z)(~ S(x) .  

This is similar to Ho 6 Huang's (1982) E ( f ) ,  except that their energy content refers 
to the contribution by u alone. The normalization of the local eigenfunctions allows 
us to relate the energy content to the amplitude. 
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FIGURE 2. Amplification rates -a4 versus frequency parameter /3. 

3.2. The nonlinear interaction problem 
After substituting the shape assumptions into (3.1)-(3.3) we obtain three first-order 
nonlinear differential equations describing the streamwise evolution of 6, El and E2 
(or 6, IAJ2 and IA2I2): 

mean flow 

subharmonic 

fundamental 

Equations (3.4)-(3.6) are subject to the initial conditions El(0)  = El,, E2(0) = E,, 
and 6(0) = 1 ; with p(0) = #lo chosen to correspond to the physical frequency of the 
subharmonic, the specified D and the initial physical lengthscale of the mean flow 
6,. This lengthscale is identified with the initial half-maximum slope thickness. The 
advection integrals are I,, I,(&) and I&&). Integrals involving wave disturbances are 
dependent on S(x) through the dependence of the local instability properties on the 
local frequency parameter /I, except for Il and la that are very nearly constant and 
have been replaced in the equations by their average value. The production integrals 
are Irsl(6) and Irs2(6) and the mode-energy exchange integral is 121(6). The viscous 
dissipation integrals are Id, Idl(6) and &.(a). The Reynolds number is Re, = U6,/v. 
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B* 
FIGURE 3. Mode-viscous-dissipation integral Id,, as function of frequency parameter p. 

The subscripts 1 and 2, as interpreted previously, denote the subharmonic and 
fundamental, respectively. The detailed definition of these integrals are given in the 
Appendix. Their physical meaning is identifiable through (3.1)-(3.3). The mean-flow 
integrals I,,, and Id are constants for a fixed velocity-ratio parameter R, whereas 
integrals involving the wavy disturbances are tabulated functions of the dependent 
variable 6(x), again for a fixed R. It was sufficient to use the Rayleigh equation in 
obtaining the characteristics of such integrals (see, for instance, Liu & Merkine 1976) ; 
they are thus not explicit functions of the Reynolds number. 

3.3. Mode-dependent interaction integrals 
Prior to discussing the numerical applications, it would be most instructive to show 
the behaviour of the mode-related integrals in (3.4)-(3.6). These are ‘universal ’ 
functions of the local shear layer thickness or more precisely of the local frequency 
parameter /3 = 2nfs(x)/U for a fixed frequency f. The value of the velocity-ratio 
parameter R is taken t o  be 0.31. The mode viscous dissipation integral Ian is shown 
in figure 3 as function of /3. The mode-advection integral I ,  slowly varies between 
0.965 and 1 in the same interval of /3 and is thus not shown. The mode-production 
integral Irsn is shown in figure 4. The integrals IrS1 and I,,, are the subharmonic and 
fundamental ‘ production ’ integrals, respectively. Their sign controls the energy flow 
to or from the mean flow. When they are positive the disturbance wave component 
is amplified by extracting energy from the mean flow and when negative the 
disturbance is ‘damped’ by returning energy to the mean motion. The latter 
phenomenon is rather similar to hydrodynamic stability interpretations and is now 
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A 
FIGURE 4. Mode-production integral I,,, as function of frequency parameter p. 

widely observed in developing free shear flows. The interpretation of n = 1 and 2 
is that the frequency ratio /3,:/3, be maintained as 1 :2. That is, if the physical 
frequency of the fundamental (p,) has the value f, = 2f then the subharmonic 
component (p,) has the valuef, = f, both at the same S(x) .  Thus, in figure 4, if the 
fundamental mode is initiated at pZ = 0.4426 where Irs2 is maximum, the subhar- 
monic would be at p, = 0.2213 where I,,, is smaller and to the left of the hump of the 
production-integral curve. In this case, as S(z) increases the respective production 
integrals then traverse along this curve with I,,, becoming negative first while Irsl 
passes through its maximum value. 

The binary-mode-interaction integral I,, is shown in figure 5 ,  with the relative 
phase angle B as a parameter. We have chosen to interpret Izl as a function of /3, 
in figure 5 (while keeping track of B,, for the same S ( x ) ) .  The integral I,,, which 
represents the interaction between the fundamental and the subharmonic, controls 
the energy flow between the two modes via its magnitude and sign. The subharmonic 
draws energy from the fundamental when Ial < 0 and loses energy to the fundamental 
when I,, > 0. In  turn the sign of this integral is controlled by the phase angle between 
the two modes 0 and is of great significance to the role of the binary-mode-interaction 
mechanism. In  effect B is the governing parameter that dictates whether the 
subharmonic grows at higher (Kelly 1967) or lower amplification rates than those 
dictated by linear stability analysis. 

The present formulation is intended to solve the streamwise development problem 
from the use of the local linear theory in the evaluation of the interaction integrals. 
It is, however, crucial to reconcile any similarities with the pioneering work of Kelly 
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FIGURE 5 ( a ,  b). Binary-mode-interaction integral I, ,  as function of frequency parameter /3 with 
relative phase angle 0 as a parameter. 

(1967) for a parallel flow and weak nonlinearities. I n  the context of the present spatial 
problem, Kelly's analysis falls in the local region where the fundamental component 
is most amplified. The most amplified mode occurs a t  p, = 0.4426 in figure 2 and thus 
p1 = 0.2213, where the subharmonic is amplifying owing to  the mean flow. I n  figure 
5,  where the horizontal axis is /I1, a vertical line drawn from p1 = 0.2213 cuts across 
values of the binary-mode-interaction integral for various relative phase angles 8. 
For this situation, 0" < 8 < 60" give rise to I, ,  < 0, implying energy transfer from 
the fundamental to  the subharmonic. Thus the mean-flow amplification of the 
subharmonic component is augmented by the fundamental within this range of phase 
angles. The opposite is true as 8+.n as shown in figure 5 for 8, = 0.2213. This is 
consistent with Kelly (1967). We again emphasize that the temporal, parallel-flow 
problem that Kelly discussed occurs ' momentarily ' a t  one streamwise location 
corresponding top, = 0.4426 andp, = 0.2213 in the context of the present developing- 
shear-layer problem. I n  our problem, the development of the amplitudes is a strong 
function of the initial and spectral conditions, dictated by the nonlinear interactions 
according to (3.4)-(3.6). The realistic outcome is not necessarily anticipated from 
considerations based on parallel flow. 

4. Results and discussion 
The theoretical formulation, presented in the previous sections of this paper, 

indicates that the initial conditions (Po, E,,, E lo )  along with the phase angle 6 are 
parameters that play a significant role in the development of the two interacting wave 
modes and, subsequently, the development of the shear layer. The phase angle 8 
between the fundamental wave component and its subharmonic has been shown to 
be the parameter responsible for the direct energy transfer between the two wave 
modes. The initial dimensionless frequency Po has two significant effects. It defines, 
on one hand, the initial amplification rate and the downstream amplification ' history ' 
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of each wave from the interaction with the mean flow and, on the other, the nature 
of the initial interaction between the two waves. The strength of the interaction 
between the waves as well as that between the waves and the mean flow is also 
controlled by the initial energy densities E,, and El,  of the fundamental and 
subharmonic, respectively, as pointed out by Kelly (1967). Finally, the Reynolds 
number Re, influences the intensity of viscous dissipation for all the components of 
the flow. This parameter is of minor importance in this formulation where the local 
linear solution is independent of the Reynolds number, and viscous dissipation is 
weak compared to the other mechanisms present. 

We have solved the nonlinear interaction problem, formulated by (3.4)-(3.6), for 
different values of the controlling parameters, in order to bring forth their effect on 
the development of the shear layer and the interactions between the three components 
of the flow. These results are presented first, and would provide a basis for possible 
further quantitative experiments. We then present results for conditions based on 
the experiment of Ho & Huang (1982) in order to compare our theoretical results 
with their measurements. 

4.1. Effect of the phase angle 0 
To better illustrate the role of the phase angle 0 on the development of the shear layer 
and the energy content of the interacting modes, we have chosen to examine two 
cases. For fixed initial energy densities E,, = 0.68 and El ,  = 0.12 lo-* and fixed 
Reynolds number Re, = 71 we have solved the interaction problem for low and high 
initial frequency parameters. We have carried out the calculations for various 
representative values of the phase angle. The initial frequency parameter character- 
izing each case is, by our choice, that of the subharmonic wave. 

4.1.1. Low initial frequency parameter 
The streamwise development of the energy levels of the fundamental (E,)  and 

subharmonic (E,)  waves, scaled by the corresponding initial values, are presented in 
figure 6 ( a )  for phase angles of 0" and 180°, as well as for the case where the direct 
wave-interaction mechanism is artificially neglected. In the latter case, indirect 
coupling between the waves is through their nonlinear interactions with the mean 
flow. The initial subharmonic frequency parameter is taken to be /3, = 0.075, giving 
a fundamental frequency of 2/3, = 0.15. The two modes start at a frequency 
parameter much smaller than the most amplified case in terms of linear stability 
theory (figure 2). Thus, it is expected that for this case in order to approximate the 
flow more accurately one would have to take more wave modes that fall within the 
unstable range into account (a mode of 38 for instance). In the present study, 
however, we are concentrating on the two-wave interactions (namely the one between 
subharmonic and fundamental) and our discussion will be carried out in this context 
only, leaving the interactions between three or more modes to future investigation. 
Naturally the fundamental experiences maximum amplification (among the two 
modes) first while the subharmonic grows a t  a lower rate as can be seen from 
figure 6 (a) .  

In the early stage of the development of the two modes when 0 = 0" the 
subharmonic draws energy from the fundamental component because the two- 
mode-interaction integral I,, is negative. Therefore the subharmonic is growing, in 
that region, at higher amplification rates than those predicted by linear stability 
analysis from its interaction with the mean flow only. This is evident from the 
comparison with the decoupled case in the region 0 < z/S, < 55, as presented in 
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FIGURE 6. Effect of relative phase angle : (a )  development of modal energy content and ( b )  mean-flow 
growth for low initial frequency parameter. (0 = 0' (----), 180' (-.---) and decoupled (-) 
cases; E,, = 0.12 x E,, = 0.68 x = 0.075, Re, = 71). 

figure 6(a) .  This situation persists until the fundamental goes through maxi- 
mum amplification (for a local p2 < 0.6 as indicated in the discussion of the 
two-mode-interaction integral) and is in agreement with the conclusion of Kelly 
(1967). I n  the same region, for the case of 8 = 180", the interaction integral I, ,  is 
positive and the subharmonic loses energy to the fundamental component, thus 
growing at a lower amplification rate, as shown in figure 6 (a ) .  The comparison with 
the decoupled case, in this region, shows that the wave interaction has a greater effect 
on the development of the subharmonic because its interaction with the mean flow 
is much weaker than that of the fundamental. The extraction of energy from the mean 
flow is the dominant energy supply for the fundamental component and is responsible 
for the peak in E2. In  the strongly nonlinear region, for values of the fundamental- 
frequency parameter p2 higher than 0.6 (x/&, > 55 in figure 6 a )  the sign of the 
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two-mode-interaction term, IZl El I&/$, in (3.5) and (3.6) is reversed and therefore 
the subharmonic loses energy to the fundamental component when 8 = 0". Because 
of this interaction the subharmonic wave grows at  a lower rate and the fundamental 
persists downstream even when i t  starts losing energy to the mean flow. This 
mechanism accounts for the lower and later peak of the subharmonic energy El 
compared to the decoupled case. 

In the case of 8 = 180", the opposite situation to the 8 = 0" case takes place in 
the strongly nonlinear region. The subharmonic, drawing energy from the funda- 
mental, grows faster and to a higher peak, while the fundamental is quickly damped 
by the combined loss of energy to the subharmonic component and mean flow. The 
wave interaction is the decisive factor for the survival of the fundamental far 
downstream, since there it is being damped by returning energy to the mean flow, 
where I,,, < 0 (figure 4 ) .  The subharmonic is affected by the wave interaction to a 
relatively small extent. This becomes obvious from the comparison with the 
decoupled case in figure 6 (a).  

From (3 .4) ,  it is obvious that the mean flow will spread as long as energy is lost 
from the mean flow, whether it is due to viscous dissipation or energy transfer to the 
fluctuations (Ru-Sue KO, Kubota & Lees 1970; Liu & Lees 1970; Liu 1987). The 
resulting growth of the mean flow is shown in figure 6(b ) .  The initial rapid growth 
is governed by the strong interaction of the amplified fundamental disturbance with 
the mean flow and remains unaffected by the interaction between the two 
disturbances, which in this region is very weak. The first plateau is due to the peak 
in the fundamental, the second to the peaking of the subharmonic. These plateaux 
are associated with the observed phenomenon of negative energy production from 
the mean (see, for instance, Fiedler et al. 1981) that occurs when the sign of the 
Reynolds stress -a of a particular wave mode of coherent structure is opposite to 
that of the mean-flow rate of strain alJ/az and the production integral I,,, < 0, thus 
tending to halt the shear-layer growth. After the first plateau the growth of the mean 
flow is again rapid because of the amplification of the subharmonic from extraction 
of energy from the mean flow. However, the interaction of the two modes seems to 
play some role on this development. In the case of 6 = 180" the growth of the mean 
is somewhat steeper because of the extra energy that is channelled into the 
subharmonic wave from the fundamental component. The opposite is true in the case 
where 8 = 0" and the plateau that results from the saturation of the subharmonic 
is somewhat lower. The shear-layer thickness due to the subharmonic is very nearly 
double that due to the fundamental in figure 6(b ) .  That is, the ratio of the two 
plateaux is nearly two. However, this is somewhat dependent upon the initial 
conditions, as we shall show later, and ought not to be a general rule. 

4.1.2. High initial frequency parameter 
The streamwise development of the energy levels of the fundamental (E,)  and 

subharmonic ( E l )  waves, scaled by the corresponding initial values, are presented in 
figure 7 (a) for phase angles of O", 80" and 180°, as well as for the decoupled case. The 
initial energy densities and Reynolds number are the same as in the case of low initial 
frequency parameter while the value of the latter is now taken to be Po = 0.18 for the 
subharmonic and 2P0 = 0.36 for the fundamental component. The latter is slightly 
less than the initially most amplified Strouhal frequency. 

Both disturbances experience a higher initial amplification than in the previous 
case because their initial frequency parameters are closer to the one corresponding 
to the most amplified disturbance. A consequence of this is that the two-wave 
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interaction mechanism is much weaker than the interaction of both wave components 
with the mean. Subsequently the initial development of E, and E, is essentially 
unaffected by the modal interaction as shown in figure 7 (a) .  The two-wave interaction 
becomes important in the strongly nonlinear region, after the fundamental has 
reached its peak, in the same manner as in the previous case of low initial frequency 
parameter. The case of 6 = 80' is characterized by a weaker modal interaction than 
that of 0 = O", as one can expect from the magnitude of the respective interaction 
integrals (figure 4). The energy flow is from the subharmonic to  the fundamental 
component for both of these phase angles, in the strongly nonlinear region. The 
resulting growth of the mean flow, which is shown in figure 7 ( b ) ,  indicates the same 
general trends observed for the low-initial-frequency-parameter case. 

The two-wave interaction mechanism has a dual effect on the modal development. 
It affects the amplification rate of the subharmonic directly by providing energy from 
the fundamental and indirectly by increasing the energy gained from the mean, since 
this gain is proportional to  El .  These two effects are of course coupled. The direct 



Nonlinear binary-mode interactions i n  a developing mixing layer 359 

0.010 i 

-0.005 L 
0 

. - . . . . , . . . , - . - . . . . . - , - , - . . . . 
180' . ,  

./ 

\ I  

, , ,  I L I , / l , , , , I I I I  , I ,  0 ,  

x/4l 
50 100 150 200 250 

\, 

0 50 100 150 200 250 
X I  80 

FIGURE 7. Effect of relative phase angle: (a) development of modal energy content, ( b )  mean-flow 
growth, (c) mode-production development and (d )  development of binary-mode interaction 
for high initial frequency parameter. E,, = 0.12 x 
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E,, = 0.68 x lo-*, /& = 0.18, Re, = 71). 

two-wave interaction mechanism is represented by the term IZl El @/8, and is shown 
in figure 7 ( c ) .  The indirect wave-interaction effect can be realized by comparing the 
mean-subharmonic interaction term, IrS1 El/& for the cases of 0 = 0" and 0 = 180' 
as presented in figure 7 ( d ) .  It also can be seen from figure 7 ( c ,  d) that the indirect 
effect of the two-wave-interaction mechanism is more significant, because the energy 
exchange with the mean is the controlling factor in the growth of the subharmonic 
in this particular case. 

4.2. Eflect of the initial frequency parameter Po 
The streamwise development of the energy levels of the two wave modes are shown 
in figure 8 (a)  for three different initial frequency parameters and for a phase angle 
0 = 0". The initial frequency parameter, as pointed out earlier, sets the initial 
amplification rate of the disturbances from their interaction with the mean flow ; it 
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also controls the overall amount of energy that each individual disturbance will 
extract from the mean flow throughout its development. I n  the case of Po = 0.30 the 
disturbance characterized by 2P0 = 0.6 starts at an amplification rate lower than that 
of its subharmonic and past its maximum amplification rate, as can be seen from the 
mean-flow interaction integral in figure 3. Subsequently the wave characterized by 
Po = 0.3 dominates throughout the development of the flow, as shown in figure 8(a) ,  
and is actually the ‘fundamental’ disturbance. The wave characterized by 2P0 is its 
first harmonic and despite the fact that  the two-wave interaction mechanism acts 
in its favour (0 = O O ) ,  its role in the development of the flow is negligible. This is also 
apparent from the development of the mean flow for this case shown in figure 8 ( b ) ,  
where the single plateau is attributed to the saturation of E ,  only. 

I n  general decrease of the initial frequency parameter will increase the downstream 
amplification ‘history’ of each wave. The peaks in E,  and E,  are higher and occur 
a t  a later stage as the initial frequency parameter is decreased because of the implied 
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FIGURE 9(a, b) .  For caption see next page. 

increase of the overall energy extracted from the mean. The growth of the mean flow 
is more pronounced for lower values of the initial frequency parameter owing to the 
same physical effect (figure 8 b) . 

The discussion so far has been limited to the 'direct' effect of the initial frequency 
parameter on the development of the modal energy densities which is a consequence 
of the interaction with the mean flow. The effect of Po on the modal interaction 
mechanism is apparent from a comparison between the results presented in figures 
6 (a) and 7 (a)  for low and high Po respectively and for the case, say, where 0 = 0'. 
For high Po, as pointed out earlier, the early interaction which is favourable to the 
subharmonic disturbance is practically absent unlike the case where the initial 
frequency parameter is low. This effect of Po on the modal interaction mechanism 
is, however, negligible compared to that of the phase angle. According to the above 
observations, we can conclude that the effect of the initial frequency parameter is 
essentially confined to influencing the interaction between the waves and the mean 
flow. 
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4.3. Effect of the initial energy density of the subharmonic 
The results of our calculations for three different initial energy densities of the 
subharmonic are given in figure 9 (a&) with all other initial parameters being fixed 
and a phase angle t9 = 0'. The peaks in El/Elo  are inversely proportional to Elo;  
therefore, the subharmonic reaches approximately the same peak level irrespectively 
of its initial energy density. The interaction of the subharmonic with the mean 
becomes maximum earlier with increasing El, as can be seen from figure 9 ( c ) ,  where 
we show the development of the wave-mean-interaction term. This accounts for the 
earlier peaking of El and the subsequent earlier second plateau of the mean-flow 

FIGURE 9. Effect of initial subharmonic energy density: (a) development of modal energy content, 
(a) mean-flow growth, (e) mode-production-term development and (d) development of binary- 
mode-interaction mechanism. (& = 1.2 x lo-* (-), 0.4 x (----), 0.12 x (-.--); 
E,, = 0.68 x Po = 0.075, 0 = Oo, Re, = 71.) 
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FIQURE 10(a, b). For caption see next page. 

development shown in figure 9(b). The level of this plateau is independent of the 
initial energy density of the subharmonic as is the peak level of El .  The two-wave 
interaction term, presented in figure 9 (d) ,  becomes strong earlier with increasing Elo. 
For this case of 8 = 0' the two-wave interaction in the early stages of the modal 
development is in favour of the subharmonic, as discussed in an earlier section. These 
two observations explain the weakening of the interaction of the fundamental with 
the mean and the lower peak of E, with increasing Elo. This is also in agreement with 
Kelly's mechanism and results in a less prominent first plateau in the growth of the 
mean as we increase the initial subharmonic density. The location of b2 = 1 (when 
I,,, = 0) are indicated on figure 9(a)  (and figure 10a) to give a better feeling for the 
nonlinear effects. 

4.4. Effect of the initial energy density of the fundamental 
The results of our calculations for three different initial energy densities of the 
fundamental are shown in figure lO(a4). The peak value of the fundamental energy 
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FIQURE 10. Effect of initial fundamental energy density: (a) development of modal energy content, 
(b)  mean-flow growth, ( e )  mode-production-term development and (d) development of binary- 
mode-interaction mechanism. (E2, = 13.6 x (-), 6.8 x lo-' (----), 0.6 (-.---) x 
El,  = 0.12 x Po = 0.075, 8 = 0'; Re, = 71.) 

level E, is shown to be independent of its initial energy density since EJE,,  is 
inversely proportional to E,, in figure lO(a). The peak value of the subharmonic also 
remains unaffected. Therefore the plateau levels in the growth of the mean presented 
in figure 10(b) are independent of Ezo. The increase of the initial energy density of 
the fundamental intensifies the interaction with the mean (figure 1Oc) in its 
amplification region and therefore causes a faster growth of the shear layer as shown 
in figure lO(b) .  The interaction term between the subharmonic and the mean flow 
and the two-mode interaction term are inversely proportional to 6 and d (we (3.5) 
and (3.6)). Therefore, the faster growth of the mean accounts for the shift in the peaks 
of these two terms downstream (figure lOc, d ) ,  the subsequent weakening of the 
subharmonic and faster growth of the mean after the first plateau. 
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FIQURE 11.  Effect of initial Reynolds number: (a) development of modal energy content and (a) 
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4.5. Effect of the initial Reynolds number 
The development of the energy levels of the fundamental and subharmonic disturb- 
ances, scaled by the corresponding initial values, are given in figure 11 ( a )  for 
Re, = 35.5 and 71. It can be seen that viscous dissipation has a very weak effect on 
the development of the modes. The fundamental and subharmonic peaks occur earlier 
and at  a higher level with increasing Re,. This of course was expected since viscous 
effects are weaker with increasing Reynolds number. The development of the mean 
flow is shown in figure 11 ( b ) .  The growth of the mean flow is faster for high Re, in 
the initial stages before the first plateau and is related to the growth of the 
fundamental. One would expect a dower growth of the mean when the Reynolds 
number is high, because of the viscous term (( 1/Re,) Id/&) in (3.4). However, this term 
is negligible compared to the wave-production terms; thus the development of the 
mean is controlled primarily by the interaction with the two disturbances. We should 
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point out that the use of the inviscid local solutions for the disturbances renders the 
interaction integrals independent of the Reynolds number ; hence viscous effects have 
not been accounted for in full. 

4.6. Comparisons with experimental results of Ho & Huang (1982) 
The results of our calculation presented in this section are based on the experimental 
conditions corresponding to the measurements performed by Ho & Huang (1982). 
The initial subharmonic frequency parameter is taken to be Po = 0.26, giving a 
fundamental 2P0 = 0.52 which is very nearly at the maximum amplification rate 
according to the linear theory. These values were based on the initial maximum slope 
thickness So at a location 1.43 cm downstream of the splitter plate, where the initial 
wake-type profile has developed into a hyperbolic tangent shear-layer profile, as 
reported by Ho & Huang (1982). The origin in the calculation, x = 0, is taken to be 
at the experimental 1.43 cm location. The relative phase between the fundamental 
and the subharmonic is left arbitrary (and therefore unknown) in the experiment. 
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We carried out the calculations for three different phase angles, namely 8 = 0", 80" 
and 180". 

The streamwise development of the energy levels of the streamwise component of 
the fundamental (Eu,) and subharmonic (Eu,) is qualitatively in very good agreement 
with the experiment as one can see from figure 12(a), particularly for the 8 = 80" 
case. The location of the peaks in Eu, and Eu, are well in agreement with the 
experiment although the peak values themselves are underestimated. The growth of 
the shear layer shown in figure 12(b) also compares well with the experiments (Ho 
& Huang 1982) both qualitatively and quantitatively, in the region where the two 
wave modes are developing. The plateaux (attributed to the energy flow from the 
mean to the disturbances according to our previous discussion) as well as the 
approximate doubling of the thickness are evident in both the experiment and our 
results. In  Ho & Huang's (1982) experiments, the shear layer continues to spread after 
the plateau regions (figure 12 b) ; it is most likely that transition has taken place in 
that the existing fine-grained turbulence having been sufficiently strained by the 
coherent structures is now contributing towards the mean-flow spreading rate via the 
fine-grained turbulence Reynolds-stress mechanism (Liu 1981). This mechanism is 
not present in our formulation since we have not taken into account the fine-grained 
turbulence. Therefore this latter spread of the mean flow cannot be predicted by our 
calculations. 

Apart from the fine-grained turbulence, there are many other less dominant 
disturbance-wave modes present in the experiments of Ho & Huang (1982) to which 
the shear layer is sensitive. This fact together with the arbitrariness of the phase angle 
in the experiment leads to the conclusion that the quantitative details of the shear 
layer are not expected to be described by the idealized two-mode problem in the 
absence of weak fine-grained turbulence and other (not necessarily weak) modes. 
However, the problem solved here brings out the dominant physical mechanisms in 
the growth and decay of the overlapping fundamental and subharmonic disturbances, 
as well as the important effect of the initial conditions and relative phase angle. 

4.7. Further discussion of observations 
Experiments, of a preliminary nature, were performed by Zhang et al. (1985) in which 
both the fundamental and subharmonic disturbances in a mixing layer were forced 
at different relative phases. An interpretation of their results on the relative 
amplification rates is given here. (The issue of the relative importance of the wake 
effect on disturbance development in the mixing region remains open (Zhang et a.?. 
1985; Miau & Karlsson, 1986).) Zhang eta.?. (1985) found that the fundamental- 
component amplification rates remain unaffected by the relative phase angles but not 
those of the subharmonic (see figure 7, Zhang et al. 1985). 

We can recast the energy equations (3.5) and (3.6) into the form for the 
'amplification rates' using d In Enldx, where n = 1 (subharmonic) and 2 (funda- 
mental). The 'amplification rates' obtained from the right-hand sides of (3.5) and 
(3.6) are of the form 

dx Re,&? -7' 
- d In El N (f I,,, -A) I21 E2 

The first term on the right is the net 'production' rate from the mean flow and the 
second term is the mode-energy-transfer term. The mode-interaction integral I,, is 
dependent upon the relative phase between the modes (see figure 4) and is actually 
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a nonlinear effect for which the simple ( universal ’ interpretation via the linear theory 
(Zhang et al. 1985) would not suffice as is evidenced from the disturbance-amplitude 
dependence. In Zhang et aZ.’s (1985) experiments, the fundamental amplitude is about 
an order of magnitude larger than that of the subharmonic, thus the factor E,/E,  Q 1 
renders the ‘amplification rate ’ for E, dependent on the net production from the mean 
flow only and more or less independent of the energy transfer to the subharmonic 
(and thus independent of the relative phase). On the other hand, in the ‘amplificat$n- 
rate’ relation for the subharmonic lE , ) ,  the factor (EJE,)  does not occur. If E,’ is 
sufficiently large so as to render I,, El/& comparable to the net mean-flow production, 
then the ‘amplification rate’ of El would depend on the relative phase relation. The 
correction to the amplification rate due to the net mean-flow production depends on 
the sign of 12,. In the initial developing region when the scaled frequency parameter 
p1 x 0.22 (the subharmonic value for the present R = 0.31), the sign of I,, is 
consistent with that indicated by Zhang et d ’ s  (1985) interpretation (their figure 7). 
It is clear that the phase relation is not the only parameter in this problem. The initial 
and local shear-layer-thickness development as well as the initial and local mode 
amplitudes all contribute to the nonlinear problem. 
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Appendix. Two-mode interaction integrals 
0 

I m = -1 [I (1 - R  tanhr]) [( 1 -R tanh y),- (1 + R)2] dr] 
2 -m 
r m  1 

+J 0 (l-Rtanhr])[(l-Rtanhy)z-(l-R)z]dq] = 2R2(f-ln2), 

r+m 

+co 
Irsl = 2R I sech2 y Im (a, $,&) dy, 

-m 

+OD 

Irs, = 2R sech2 y Im (a, $&) dy, 
-a, 
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Id = I R2 sech*qdq = -, 
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